Monday, November 30, 2020

Main Focus of a Civil Engineer

 

"Civil engineering is the oldest and most diverse branch of engineering. In its broadest sense, the civil engineer adapts the physical features of the earth to the needs of society. According to the University of Florida, approximately one out of four engineers is engaged in civil engineering."

Civil engineers design, construct, maintain, and operate infrastructures, while simultaneously safeguarding public and environmental health and upgrading neglected structures and systems. Civil engineering reaches from the natural environment to the constructed environment, focusing on interactions between the two, with an emphasis on sustainability.

Combining atmospheric and energy sciences, civil-engineers study climate, air pollution, and weather, addressing problems which might be solved through renewable energy systems. They examine the availability of renewable resources (wind, hydropower and solar), and best practices for their combinations. These kinds of research brought about the first data based wind map and examine the effects of alternative fuels on air pollution.

Read More: helpdesk support salaries

Friday, November 27, 2020

Chemical Engineering Degree Online

 


There are too many lab and field study requirements to make online study suitable for a conventional B.S. in chemical engineering, but it is possible to earn a master of science degree in chemical engineering (MSCHE) online, through some sources. These opportunities are designed for outstanding students who already have engineering degrees. Qualifications and prerequisites are stringent.

Through chemical processes, chemical engineers find new and creative ways of making those things that improve our lives. Their work ranges from developing better skin-care products to finding materials that are more fire-resistant. Chemical engineers can be part of an innovative team at a manufacturing facility or working in cutting-edge research.
As a chemical engineer, you might be a quality control specialist for a corporation that manufactures cleaning products or jet airplanes. You might be discovering less destructive and more sustainable ways to extract and use natural resources. You might be designing or discovering the latest sensation in the eye care industry, better aerosol propellants, more durable paints, and ways to preserve foods and medicines longer. The sky is not the limit; it is just another avenue for what you might discover.

Read More: setup wirless network

Thursday, November 26, 2020

What is a Biomedical Engineer?


A relatively new discipline, biomedical engineering involves research and development that combine medical and biological sciences for the advancement of all healthcare disciplines. It is a growing and evolving career field and according to CNNMoney.com, is the #1 Best Job for 2012 in America.

Some biomedically-engineered phenomena include regenerative tissue growth, pharmaceuticals, high-tech prostheses, diagnostic imaging equipment, and micro-implants. Biomedical engineering includes an increasing subset of specialties. Some of those specialties include:

Tissue Engineering

Organ transplants made from patients' own tissue, offer a quality of life not possible with donor organs. This field has produced solid jawbones and tracheas from human stem cells. Artificial bladders have been developed and successfully transplanted into humans.

Genetic Engineering

Manipulates an organism's genes on a molecular level. Some applications include improved crops, synthetic insulin, and the production of mice more suitable for cancer research.

Neural Engineering

Centers on the repair of neural systems—those pathways that tell our muscles when to move. All paralysis victims have an interest in this science on some level.

Read More: wireless network solutions

Wednesday, November 25, 2020

Automotive Engineering Master's Degree

 

Master’s Degree

A master's degree in automotive engineering is not necessary to work in the field, but such a degree will give students specialized automotive engineering knowledge and skills. Moreover, master's degree programs offer research opportunities for students. It takes about two years to complete a master's degree program in automotive engineering.

Studies include:

  • Design and manufacturing
  • Energy and environment
  • Materials
  • Noise and vibration
  • Powertrain
  • Dynamics and control
  • Electronics and computer software
  • Ergonomics

To earn a master's degree, the student must satisfy the university's thesis requirements and/or complete a final project.

The few universities that offer online automotive engineering degrees do so only at the master’s degree level. The student gains only theoretical knowledge from an online master's degree. The student does not receive any hands-on experience, which can be important to landing a job in automotive engineering. The online programs assume that the student received hands-on experience while obtaining a bachelor's degree. Therefore, online master's degree programs in automotive engineering are meant for the working automotive engineer.

Read More: setup wirless network

Tuesday, November 24, 2020

Types of Audio Engineering Degrees


Audio engineering is an intricate blend of science and creativity. It involves technical aspects of equipment set-up and operation, but also requires a creative side to enhance and blend the sounds to produce the desired effects.

Often called sound engineers, these professionals are highly sought after in all areas of the entertainment industry. Musicians depend on audio engineers in the studio and in live performances to polish their sound and to keep it consistent throughout each recording or performance. Audio engineers mix the music and enhance the balance to provide the best final product. In television and movies, audio engineers are responsible for all of the sound effects, music, and sound levels heard in the video productions. Even radio depends on sound engineers to keep their stations operating properly. There are other careers available to audio engineers, but the entertainment industry provides the most opportunity.

For those interested in pursuing a career in the audio engineering field, there are three different levels of degrees available. An Associate in Applied Science will teach the basics of working in the industry. The Bachelor of Science degree goes more in depth in both the music and technical aspects of the business. The Master's degree programs focus on very specific aspects of audio engineering.

Read More: setup wireless networks

Monday, November 23, 2020

Real Life Example of an Applied Engineer

As a project engineer for Applied Engineering, Mike Jamieson daily exhibits the range of skills a practitioner in the field must master to excel. He interfaces with internal and external team members and associates in-person and over e-mail every morning. He then focusses on business activities such as speaking with various suppliers on product inventory, consulting with clients on budget requirements and researching options on the internet. In the afternoon, he often leaves the office to visit clients and ongoing projects. He enjoys the opportunity to get out of the office and into the field to interact live with people. For example, on one project he consulted with one of the managers on an HVAC system for a residential structure, specifically the ductwork and air flow systems. Later in the afternoon, he returns to the office to revisit projects he initially tacked in the morning. He may attend more meetings to deliver presentations on status or negotiate with suppliers to acquire the best pricing for a client project. Demonstrating his commitment to continuous education, Jamieson in the evenings attends functions featuring industry thought leaders who make presentations on recent development in technology and best practices. In the past he attended a dinner featuring a presentation by a professor at Purdue University who presented a talk on refrigeration concepts and developing compressor innovations. Ultimately, each day presents him with a range of challenges and learning experiences that enrich him.

The Association of Technology, Management, and Applied Engineering has developed congresses and resources to enhance the visibility of the field and equip practitioners with the latest knowledge and best practices in the industry. Like this organization, the Technology Student Association (TSA) and the National Society of Professional Engineers (NSPE) offer resources and materials to candidates in the field, including a library of publications, news and technological innovations. These associations work to provide rich mentoring and networking opportunities for members and aspiring candidates to enter and/or advance in the field. At the university level, students capitalize on alumni networks and on-campus recruiting efforts made by leading firms to fulfill their talent needs. Companies such as IBM, Ingersoll Rand, General Mills and CoreComm are a sampling of the firms who have acquired new personnel through these avenues. The U.S. Bureau of Labor Statistics (BLS) projects a gradual decline in the employment prospects for these types of professionals, as manufacturing activities fall within the United States. O*Net reports that these professionals earn a yearly salary of $60,560.

Read More: what is a wlan

Friday, November 20, 2020

Main Focus of an Agricultural Engineering


Agricultural engineering degrees prepare students to work professionally in the many fields of agriculture. Subsets of the studies belonging to the classification of agriculture offer unlimited opportunities for involvement in this field. Demand for Agricultural Engineers has grown over the last 10 years.

Degrees in agricultural engineering cover all aspects of the industry, from water and waste issues, massive farming of foods and livestock, water farming, farming equipment, and farm economics to genetically designed corn and cows.

Earning a degree gives students textbook knowledge and hands-on vision of their chosen field. Fieldwork and laboratory projects combined with actual practice provide a well-rounded education.

The bachelor of science is the first degree to obtain. While majoring in agricultural engineering, a student can minor is any other field. Often students will minor in a related subject such as economics, to enhance their food engineering major, for example.

Graduate students are eligible to pursue a number of advanced degrees, including the Master of Science, Master of Engineering, Master of Agriculture, Doctor of Philosophy and Doctor of Engineering. These students can major in bioacoustics, biomaterials science, bioprocess engineering, environmental and natural resource engineering, food engineering; food, feed and fiber processing; machine and energy systems; and systems analysis.

Read More: wireles

Thursday, November 19, 2020

Salary and Useful Career Resources for Acoustical Engineers


Not many U.S. universities offer official degrees in acoustic studies, so most professionals complete a Bachelor’s Degree in electrical engineering or a comparable course of study. Most employers do require at least a Bachelor’s as a minimum qualification for entry into the workforce. Many students integrate related acoustic theory courses into their degrees by taking classes in statics, circuits, thermodynamics, sound control, and vibrations, among others. A Master’s Degree may be required to qualify for some positions with a given company. At this level, students complete classes in wave propagation, optics and nonlinear acoustics. The Ph.D. level opens further management opportunities in the field, whereby students will have completed a rigorous academic training rooted in statistical analysis. This level of training opens the door to teaching at universities as well. With an eye to business, students should seek to refine their interpersonal and communication skills as well as their leadership capacities in managing a team of engineers and professionals. They may be asked to negotiate and consult with outside suppliers in managing the lifecycle of a development project.

The Technology Student Association (TSA), and the National Society of Professional Engineers (NSPE), provide members and interested parties with comparable tools and information to enhance their value in the contemporary marketplace. All of these institutions publish recent research and logistics regarding industry events and resources to the further refine the prowess of practitioners.

Students and job seekers particularly benefit from involvement with these groups, as the institutions provide invaluable networking and mentoring opportunities for individuals to develop relationships with potential employers and their contemporaries in the field. Esteemed firms such as Boeing, Procter & Gamble, and Universal Studios have sought candidates through these avenues. According to the U.S. Bureau of Labor Statistics (BLS), the job growth projections for acoustical engineers remains strong through 2020, where hiring is projected to grow by 10 percent. The states of California, Texas and Michigan possess the greatest opportunities for professionals. While exact statistics on the median salary of these professionals is unavailable, O*Net reports that electrical engineers of the same background command a yearly salary of $89,180.

Read More: how to setup a wireless network

Wednesday, November 18, 2020

Vehicle Engineering Career Outlook

 

Vehicle Engineering Career Outlook

Vehicle engineers dedicate themselves to the design, creation and functionality of vehicles and their components, including automobiles, trucks, buses, and motorcycles. Traditionally, they work in the entire product life cycle from the initial design through production, distribution and marketing, though often specialize in design, research and development or manufacturing. Take some time to request information from schools in our directory that can help you become a vehicle engineer. We recommend contacting multiple schools to be sure you start out on the right track!

Vehicle engineers are professionals who integrate engineering and business acumen to ensure vehicles are developed within cost requirements. Engineers in this field utilize a bevy of scientific principles including thermodynamic and mechanical inquiry to enhance operation and developing solutions for design flaws. Upon realizing a specialty, a vehicle engineer may be asked to execute a bevy of duties and responsibilities. Some undertake the design and creation of visual models for various vehicles and their accompanying parts and features with the assistance of digital applications, enabling them to determine the best source materials to employ.

A medley of companies compete for the expertise and skills of these scientific professionals. Producers of automobiles and commercial vehicles as well as component manufacturers employ these types of engineers to work on luxury, sport and utility vehicles and their supporting parts. In addition to the auto industry, design firms, industrial equipment manufacturers, energy firms, and competitive racing teams endeavor to secure the services of vehicle engineers. With these types of firms, these professionals dedicate their efforts to constructing prototypes and models of parts, the application of evaluation processes, computer software, and physical integrity measurements. Along these lines, professionals may endeavor in developing equipment and parts that meet evolving market conditions, customer tastes, and government safety and health requirements. In addition, they may refine design specifications, examine the environmental implications of a project, oversee the installation of new or enhanced assets into production facility, and/or investigate realized or potential failures in an engineering system. From a business executive perspective, vehicle engineers may negotiate with suppliers in managing contracts, delivery schedules, and logistics as well as track project budgets. Global companies such as General Motors, Tesla, Chevron, Johnson Controls, and Toyota serve as a sample of the firms in the market for these types of employees.

Read More: wireles

Tuesday, November 17, 2020

Real-life Example of a Transport Engineer Career

Real-life Example of a Transport Engineer Career

Based on the experience of several young practitioners in the profession, the field of transport engineering offers a rich professional experience. Scott Sorensen , an engineer from the University of Nebraska, developed an after school education program to teach principles of engineering to high school students, whereby they designed buildings and created electrical applications for Christmas lights. Matthew Arnold, an engineer from Kansas State University, finds the hands on nature of the field most engaging. He thrives performing outdoors, enabling him the experience the vitality absent working in an office. Both Sorensen and Arnold enjoy the state-of-the-art technology they employ on a daily basis such as self-driving vehicles. New challenges encountered have made the field particularly rewarding for Tomas Lindheimer, an engineer from the University of Kansas. He enjoys the broad concepts and intellectual curiosity the industry demands. He believes he’s constantly learning new concepts that compel him to rethink his preconceived notions.

The direct impact the field has on people’s lives serves as the most attractive part of the profession for these young professionals. Instead of sitting in an office, detached from their fellow man, these engineers see the influence their work has on the daily lives of the people they serve. Many professors and industry executives encourage aspiring students and candidates to carefully consider the impact their work has on society as a whole. It is one of a few industries where practitioners see first-hand the results their technical backgrounds have on the ways people experience their daily lives.

Read More: wifi mode

Monday, November 16, 2020

Thermal Engineering Career

 

Thermal Engineering Career

Professionals in the field of thermal engineering strive to develop more efficient means for transferring energy into more practical means, drawing on their expertise in heat transfer. Within an industrial context, these engineers work on solutions for fuels, exploring forms of chemical, electrical and mechanical energy. These professionals find specialization in the fields of high technology, solar power, oil and gas, power companies, as well as temperature control systems. Transforming power grids to create more affordable electricity has become one of the most popular fields utilizing the expertise of thermal engineers.

If you want to know more about becoming a thermal engineer, contact the schools listed here to learn more. It’s important to talk to as many schools as you can to determine the best way forward.

Thermal engineers dedicate their efforts to refining electronics systems and safety applications. They collaborate extensively with groups of hardware and software experts at all stages of the product cycle from initial design through the manufacturing and installation of products and systems. In this capacity, they may develop models for industrial assets rooted in computer projects for optimizing source materials and functionality.

Read More: w-lan

Friday, November 13, 2020

Real Life Example of a Structural Engineer

 

Real Life Example of a Structural Engineer

John Shmerykowsky , an experienced structural engineer, has witnessed first-hand the rewards of the career as well as the technological transformations that are reshaping the industry. As a principal of his own firm, he spearheaded the work completed at the Phillip Morris building in New York City at 120 Park Avenue. He works primarily as a consultant to architects, while he completed his education at Fountainbleu in Paris. Shmerykowsky has developed his reputation by completing projects that feature unique challenges. For example, the Phillip Morris project possessed a structure that was one quarter positioned over functioning subway tracks that were employed to transport garbage. His team had to develop an approach that would enable them to complete work on the building, while enabling the tracks to run without interruption. He also developed sustainable features in the building including windows conducive to harnessing natural light. Over time, he has seen how vital digital applications have become to the industry, whereby he encourages all aspiring professionals to become comfortable with the technology as well as current ones to reman vigilant in keeping current on computer-based trends. His firm Shmerykowsky Consulting Engineers currently seeks structural engineers to add to their team to help realize current projects for their portfolio of clients. Like the company’s founder, the firm seeks engineering professionals that possess a diverse range of technical, business, interpersonal and communication skills that are tantamount to executing current and future structures throughout the world.

Read More: ccnp certificate

Thursday, November 12, 2020

Software Engineering Degrees

 

Software Engineering Degrees

Most people are familiar with older, more traditional engineering fields such as mechanical, civil, or electrical. Software Engineering is a relatively new discipline, but in today’s increasingly interconnected world, it is becoming more and more important.

Software Engineering differs from Computer Science or Web Design in that you are formulating how the overall software system functions, and how it works within its intended hardware environment.

Software Engineers are responsible for every phase of a development project, not just for writing the computer code. Upon the initiation of a project, they make sure requirements are documented and validated.

This assures the entire project is working toward the correct goal. They then move on to system design, often overseeing the creation of software prototypes to present to clients for additional validation.

Once the design is solid, Software Engineers manage the overall development effort to make sure the pieces are coming together as planned. Finally, they create and oversee test cases which assure system functionality is complete and traceable to the requirements generated at the time of project initiation.

Software Engineering is the discipline that makes sure computer systems are developed methodically and result in building the right product with quality built-in from the beginning.

Read More: ccnp routing and switching

Wednesday, November 11, 2020

Life of a Petroleum Engineer

Life of a Petroleum Engineer

Petroleum engineers typically design equipment to extract oil and gas, and develop ways to force oil out of wells through injection of water, chemicals, gases, or steam.

They develop drilling plans, survey, evaluate, and test wells. They use computer-controlled drilling to connect separated deposits to a single well. They ensure proper installation, maintenance, and operation of oil field equipment.

Reservoir engineers optimize production with proper well placement and enhanced recovery techniques. Drilling engineers oversee the technical aspects of drilling exploration, production, and injection wells. Production and subsurface engineers direct connections between reservoirs and wells, overseeing downhole monitoring equipment and flow control, sand control, and perforations.

They select surface equipment to separate fluids (oil, natural gas, and water), and they evaluate artificial lift methods.

Emerging career choices involve pollution cleanup, hydrology, and underground waste disposal (the subsurface injection of carbon dioxide to reduce greenhouse gases). Petroleum engineers are also educated in geothermal energy production, in situ uranium leaching, and coal gasification.

The known worldwide oil and gas reserves are larger than ever. Found in diverse areas, these resources provide opportunities for assignments in the Middle East, Asia, South America, Australia, and beyond.

Read More: ccnp security certification

Tuesday, November 10, 2020

Main Focus of a Nuclear Engineering Degree

 

Main Focus of a Nuclear Engineering Degree

Nuclear engineering is the most integrated of the engineering disciplines. The many components of nuclear systems (medical imaging, nuclear fission reactors, ultrasensitive contraband detectors, and fusion reactors) must all be understood as well as how they relate to one another. Nuclear engineers must be experts in their primary field, as well as knowledgeable in other fields such as electronics, thermodynamics, physics, and materials science. The fundamentals of one science are often the same tools used in solving problems in the other disciplines.

An undergraduate degree in nuclear science and engineering develops the fundamentals of nuclear processes—their production, interactions, and radiation measurements. These studies bring the student all the way to the design phase of nuclear-based systems, stressing social, health, and energy and security impacts.

Studies also incorporate computer methods, thermal-fluid engineering, and electronics—critical tools for a nuclear engineering career.

The Bachelor of Science degree in Nuclear Science and Engineering prepares students for careers in the application and engineering of low-energy nuclear physics. This includes design, analysis, and operation of radiation systems and their applications, such as fission reactors and accelerators, and biomedical uses. Students are also prepared for graduate study in a wide range of engineering and physical sciences.

A five-year program offers an opportunity to earn a Bachelor of Science and a Master of Science in Nuclear Science and Engineering simultaneously.

Read More: certified security systems

Monday, November 9, 2020

Real Example of Molecular Engineering

 

Real Example of Molecular Engineering

As it is an emerging field with seemingly unlimited potential, the field of molecular engineering has stirred some controversy regarding its implications ethically, environmentally and socially. At the same time, the science promises to exert its influence in all spheres of human life around the world. In the medical devices industry, a recent case study of Ortho Molecular illuminated the powerful potential of this form of engineering. The firm employs a ProScan metal detection system, rooted in molecular engineering, which was developed by Advanced Detection Systems (ADS). This ensures the quality of all of the products in its manufacturing system. The device memorizes the product sensory impulse, and then recalls it as it travels through the scanner, thereby ensuring the finished product meets all Food and Drug Administration health and safety codes. The ProScan application evaluates the entire device to identify the presence of any metal. If it is detected, a signal occurs compelling a check of the entire batch of deliverables. The system enables quality control staff to quickly identify integrity breaches and remedy them seamlessly. Molecular engineering was critical in developing this acute detection system application. Ortho Molecular purchased several of the ADS systems for its medical device product manufacturing processes because of its sensitivity and efficiency.

Read More: cisco ccnp certifications

Friday, November 6, 2020

Mining and Geological Engineering

 

Mining and Geological Engineering

Mining and geological engineering focuses primarily on the study and design of creating safe and effective means to extract metals and minerals for industrial, commercial and scientific purposes. Requiring education and understanding not only of mining principles and practices, engineers in this field are also expected to have an advanced and dynamic understanding of geological sciences, such as soil and mineral composition, surveying, prospecting and exploratory geological research. In addition to extracting the more conventional materials such as oil, precious and industrial metals and rarer gems and materials, many new advancements in information technology have expanded the role of geological engineering to search and mine for other materials, such as the dozens of special minerals and materials used in computer, tablet and smart phone construction.

At EducatingEngineers, we want you to understand the complexities of engineering careers and what it takes to succeed in your education. Please read the information below to learn more. And contact the schools in our directory to get started!

Employed by governments, major corporations, non-profit organizations and scientific/academic research institutions, geological engineers play pivotal roles in everything from industrial production of materials and energy, to advancing scientific understanding of the material composition of the Earth. Because of the numerous and varied functions for geological engineering and the substantial technological advancements made in the field itself, the role of the engineer in respect to mining and geological research continues to evolve, finding new and interesting applications for the science with each passing year.

Read More: professional security systems

Thursday, November 5, 2020

Earning Your Mechatronics Engineering Degree

 

Earning Your Mechatronics Engineering Degree

Mechatronic engineers require at least a Bachelor’s degree, whereby most of these professionals have completed undergraduate studies in mechanical engineering. The field, though, transcends this traditional discipline into a variety of fields of study such as electronics, decision-making theories, and information technology, among others. With a Master’s degree in mechatronic engineering, an individual has the credentials to assume management and more advanced research posts. Graduate programs often feature traditional classroom instruction with practical industry experience. Coursework traditionally explore practices in automation theory, methodology, and analysis. An example mechatronic engineering class at the Massachusetts Institute of Technology (MIT), for example, instructs the design of mechatronic systems which integrate mechanical, electrical, and control systems engineering. For those seeking a less rigorous option of entering the field, an associate's degree in mechatronics can be attained at a community college or technical institution. These 2-year degree programs equip candidates with the skills to assume entry-level positions, whereby they troubleshoot maintenance processes. Classroom instruction typically entails course work in robotic design as well as training in engineering drawing.

Students of mechatronics have gone on to develop many of the “smart” devices that have transformed a medley of industries around the world. From robots and anti-lock brakes to photocopiers and computer drives, mechatronics professionals are changing the way people work and live, according to the American Society of Mechanical Engineers (ASME). The technology is also found in humidity sensitive clothes dryers and windshield wipers as well as in healthcare, agriculture, construction, entertainment, automobiles, and tools for the disabled and elderly communities. These technological innovations reflect the dedication these professionals have to becoming life-long learners. With a bevy of associations, professional organizations, societies and resources likes the American Society for Engineering Education (ASEE), the Technology Student Association (TSA), and the National Society of Professional Engineers (NSPE), among others, students and seasoned professionals have seamless access to the knowledge and resources necessary to bolster their education and skills as the industry evolves over time. Organizations such as these also provide mentoring and networking opportunities that have the potential to enhance the prowess of an individual seeking transformative career opportunities and guidance as well as for institutions seeking to attract and nurture talent to their efforts. In addition, esteemed institutions such as MIT offer free online course programs for students and professionals through its Open Course Ware initiative.

Read More: cisco security certifications list

Tuesday, November 3, 2020

Materials Science and Engineering Degree

 

Materials Science and Engineering Degree

Few studies are as vital to the advancement of industry as Materials Science and Engineering. Focused on the study, discovery and creation of new physical materials for use in everything from medicine, automotive and aerospace engineering and consumer goods, to rocketry and space exploration, careers in Materials Science and Engineering maintain a heavy focus on attention to detail, critical thinking and problem solving skills. As an “interdisciplinary science,” Materials Science and Engineering combines a variety of specific skills and studies, varying upon the professional or scientific objectives of the student. With strong emphasis in areas such as mathematics, thermodynamics, chemistry, bio-chemistry and materials properties (mechanical, transitional, chemical,) Materials Science and Engineering is a study which focuses on the physical materials used in given applications, for the purposes of research, safety, quality control and in certain professional areas, forensic engineering and investigation.

If you are ready to learn more about this area of engineering, contact the schools in our directory to learn more about their degree programs. We work with these schools directly and do not charge for our services. We simply want to help students like you understand your options!

Classically referred to as “metallurgy” in many schools and training programs, Materials Science and Engineering is generally regarded as a relatively new field of study, combining older metallurgic arts and understanding with newer studies of things such as atomic structure, applied physics and the creation and study of newer synthetic materials. Professional opportunities in the field cover a broad spectrum of industrial and scientific sectors, ranging from basic scientific research and discovery to applicable industry specific occupations in fields such as bio-technology, defense and consumer product engineering.

Read More: ccnp route switch

Monday, November 2, 2020

Jobs with a Marine Engineering degree

 

Jobs with a Marine Engineering degree

Marine engineering graduates have a number of career options. They may choose to work as naval combat or propulsion engineers or marine equipment specialists. Becoming a marine systems, marine structural, or ship’s engineer is also a possibility. Others may find the job duties of a marine equipment specialist or hydrographic surveyor more to their liking.

Many companies hiring freshly graduated marine engineers provide hands-on training using new employees’ academic knowledge as a foundation. In general, undergraduate students are expected to take advantage of marine engineering-related work-study jobs and internships to improve their likelihood of being hired post-graduation.

Individuals with a masters or PhD in Marine Engineering usually aim for jobs in government or academia. Working for private design, engineering and architectural firms is also a popular choice. Potential jobs for those holding advanced Marine Engineering degrees include:

  • Engineering Professor
  • Submarine Engineer
  • Shipyard Project Engineer
  • Marine Operations Manager

Real Life Example of a Structural Engineer

John Shmerykowsky , an experienced structural engineer, has witnessed first-hand the rewards of the career as well as the technological tran...